Bibliography concerning climatic changes given by Nickos Goulopoulos in 2009 ("Anthropos" 14, pages: 241-251)



[1] Muller, R.A., and G.J. MacDonald, Ice Ages and Astronomical Causes, Springer Praxis, Chichester, UK (2000).

[2] Fr¨ohlich, C., Observations of irradiance variability, Space Sci. Rev. 94, 15–24 (2000).

[3] Lockwood, M., R. Stamper and M.N.Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years, Nature 399, 437 (1999).

[4] Beer, J., Long-term indirect indices of solar variability, Space Sci. Rev. 94, 53–66 (2000).

[5] Lean, J.L., J. Beer and R. Bradley, Reconstruction of solar irradiance since 1610: Implications for climatic change, Geophys. Res. Lett. 22, 3195–3198 (1995).

[6] Lean, J.L., Y.-M. Wang and N.R. Sheeley, The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: Implications for solar forcing of climate, Geophys. Res. Lett. 29, 2224 (2002).

[7] Foukal, P., G. North and T.Wigley, A stellar view on solar variations and climate, Science 306, 68 (2004).

[8] Foukal, P., C. Fr¨ohlich, H. Spruit and T.Wigley, Variations in solar luminosity and their effect on Earth’s climate, Nature 443, 161–166 (2006).

[9] Rudiman, W.F., Earth’s climate, past and future, W.H. Freeman, New York (2001).

[10] Thompson, W.G., and S.L. Goldstein, Open-system coral ages reveal persistent suborbital sea level cycles, Science 308, 401–404 (2005). 32

[11] Mudelsee, M., The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka, Quat. Sci. Rev. 20, 583–589 (2001).

[12] Haigh, J.D., The effects of solar variability on the Earth’s climate, Phil. Trans. R. Soc.A 361, 95 – 111 (2003).

[13] Svensmark, H., and E. Friis-Christensen, Variation in cosmic ray flux and global cloud coverage - a missing link in solar-climate relationships, J. Atm. Sol. Terr. Phys. 59, 1225 (1997).

[14] Marsh, N.D., and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett. 85, No. 23, 5004–5007 (2000).

[15] Marsh, N.D., and H. Svensmark, Galactic cosmic ray and El Ni˜no-Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties, J. Geophys. Res. 108 D6, 4195 (2003).

[16] Kernthaler, S.C., R. Toumi and J.D. Haigh, Some doubts concerning a link between cosmic ray fluxes and global cloudiness, Geophys. Res. Lett. 26, 863–865 (1999).

[17] Jorgensen, T.B., and A.W. Hansen, Comments on “Variation of cosmic ray flux and global cloud coverage - a missing link in solar-climate relationships” by Henrik Svensmark and Eigil Friis- Christensen, J. Atm. Sol. Terr. Phys. 62, 73–77 (2000).

[18] Kristj´ansson, J.E., and J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing?, J. Geophys. Res. 105, 11851–11863 (2000).

[19] Kristj´ansson, J.E., A. Staple and J. Kristiansen, A new look at possible connections between solar activity, clouds and climate, Geophys. Res. Lett. 29, 2107–2110, doi: 10.1029/2002GL015646 (2002).

[20] Sun, B., and R.S. Bradley, Solar influences on cosmic rays and cloud formation: A reassessment, J. Geophys. Res. 107, D14, doi:10.1029/2001JD000560 (2002).

[21] Damon, P.E., and P. Laut, Pattern of strange errors plagues solar activity and terrestrial climatic data, EOS Transactions 85, 370–374 (2004).

[22] Usoskin, I.G., N.D. Marsh, G.A.Kovaltsov, K. Mursula and O.G. Gladysheva, Latitudinal dependence of low cloud amount on cosmic ray induced ionisation, Geophys. Res. Lett. 31, L16109 doi: 10.1029/2004GL019507 (2004).

[23] Harrison, R.G., and D.B. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. Roy. Soc. A, doi:10.1098/rspa.2005.1628 (2006).

[24] Vieira, L.E.A, and L.A. da Silva, Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects, Geophys. Res. Lett. 33, L14802, doi:10.1029/2006GL026389 (2006).

[25] Hartmann, D.L., Radiative effects of clouds on Earth’s climate, in Aerosol-Cloud-Climate Interactions, International Geophysics Series 54, ed. P.V. Hobbs, Academic Press Inc., San Diego, 151–173 (1993).

[26] Carslaw, K.S., R.G. Harrison and J. Kirkby, Cosmic rays, clouds, and climate, Science 298, 1732– 1737 (2002).

[27] Eddy, J.A., The Maunder minimum, Science 192, 1189–1202 (1976).33

[28] Hoyt, D.V., and K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction, Solar Phys. 179, No. 1, 189–219 (1998).

[29] Moberg, A., D.M. Sonechkin, K. Holmgren, N.M. Datsenko and W. Karl´en, Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature 433, 613–618 (2005).

[30] Polissar, P.J., M.B. Abbott, A.P.Wolfe, M. Bezada, V. Rull, and R.S. Bradley, Solar modulation of Little Ice Age climate in the tropical Andes, Proc. Nat. Acad. Sc. USA 103, 24, 89378942 (2006).

[31] Mann, M.E., R.S. Bradley and M.K. Hughes, Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392, 779–787 (1998).

[32] Mann, M.E., R.S. Bradley and M.K. Hughes, Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations, Geophys. Res. Lett. 26, 759–762 (1999).

[33] Pollack, H.N., and J.E. Smerdon, Borehole climate reconstructions: spatial structure and hemispheric averages, J. Geophys. Res. 109, doi:10.1029/2003JD004163 (2004).

[34] Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G.D. Clow, S.J. Johnsen, A.W. Hansen and N. Balling, Past temperatures directly from the Greenland ice sheet, Science 282, 268–271 (1998).

[35] Stuiver, M., and P.D. Quay, Changes in atmospheric carbon-14 attributed to a variable Sun, Science 207, 11–19 (1980).

[36] Klein, J., J.C. Lerman, P.E. Damon and T. Linick, Radiocarbon concentrations in the atmosphere: 8000 year record of variations in tree rings, Radiocarbon 22, 950–961 (1980).

[37] Raisbeck, G.M., F.Yiou, J. Jouzel and J.-R. Petit, 10Be and 2H in polar ice cores as a probe of the solar variability’s influence on climate, Phil. Trans. Roy. Soc. Lond. A 300, 463–470 (1990).

[38] Usoskin, I.G., K. Mursula, S.K. Solanki, M. Sch¨ussler and G.A.Kovaltsov, A physical reconstruction of cosmic ray intensity since 1610, J. Geophys. Res. 107, doi:10.1029/2002JA009343 (2002).

[39] McIntyre, S., and R. McKitrick, Hockey sticks, principal components and spurious significance, Geophys. Res. Lett., doi: 2004GL012750 (2005).

[40] Mangini, A., C. Sp¨otl, P.Verdes, Reconstruction of temperature in the Central Alps during the past 2000 yr from a _18O stalagmite record, Earth and Planet. Sci. Lett. 235, 741–751 (2005).

[41] Verschuren, D., K. Laird and B. Cumming, Rainfall and drought in equatorial East Africa during the past 1100 years, Nature 403, 410–414 (2000).

[42] Lund, D.C., and W. Curry, Florida Current surface temperature and salinity variability during the last millennium, Paleoceanography 21, doi:10.1029/2005PA001218 (2006).

[43] Newton, A., R. Thunell and L. Stott, Climate and hydrographic variability in the

Indo-Pacific Warm Pool during the last millennium Geophys. Res. Lett. 33, L19710,

doi:10.1029/2006GL027234 (2006).

[44] Baker, P.A., G.O. Seltzer, S.L. Fritz, R.B. Dunbar, M.J. Grove, P.M. Tapia, S.L. Cross, H.D. Rowe, and J.P. Broda, The history of South America tropical precipitation for the past 25,000 years, Science 291, 640–643 (2001).

[45] Brown, E.T., and T.C. Johnson, Coherence between tropical East African and South

American records of the Little Ice Age, Geochem. Geophys. Geosyst. 6, Q12005,

doi:10.1029/2005GC000959 (2005).

[46] Hodell, D.A., M. Brenner, J.H. Curtis, R. Mendina-Gonzalez, E.I.C. Can, A. Albornaz-Pat, and T.P. Guilderson, Climate change on the Yucatan Peninsula during the Little Ice Age, Quat. Res. 63, 109–121 (2005).

[47] Linsley, B.K., R.B. Dunbar, G.M.Wellington and D.A. Mucciarone, A coral-based reconstruction of intertropical convergence zone variability over Central America since 1707, J. Geophys. Res. 99, 9977–9994 (1994).

[48] Wantanabe, T., A.Winter, and T. Oba, Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios, Mar. Geol. 173, 21–35 (2001).

[49] Haug, G.H., K.A. Hughen, D.M. Sigman, L.C. Peterson, and U. Rohl, Southward migration of the intertropical convergence zone through the Holocene, Science 293, 1304–1308 (2001).

[50] Anderson, D.M., J.T. Overpeck and A.K. Gupta, Increase in the Asian southwest monsoon during the past four centuries, Science 297, 596–599 (2002).

[51] Treydte, K.S., A.H. Schleser, G. Helle, D.C. Frank, M.Winiger, G.H. Haug, and J. Esper, The twentieth century was the wettest period in northern Pakistan over the past millennium, Nature 440, 1179–1182 (2006).

[52] Wang, L., M. Sarnthein, H. Erlenkeuser, P.M. Grootes, J.O. Grimalt, C. Pelejero and G. Linck, Holocene variations in Asian Monsoon moisture: A bidecadal sediment record from the South China Sea, Geophys. Res. Lett. 26, 2889–2892 (1999).

[53] Sinha, A., et al., A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon

precipitation from the core monsoon zone of India, Geophys. Res. Lett. 34, L16707,

doi:10.1029/2007GL030431 (2007).

[54] Freidenreich, S.M., and V. Ramaswamy, Solar radiation absorption by carbon dioxide, overlap with water, and a parameterization for General Circulation Models, J. Geophys. Res. 98, 7255– 7264 (1993).

[55] Beer, J., et al., Use of 10Be in polar ice to trace the 11-year cycle of solar activity, Nature 347, 164–166 (1990).

[56] Bard, E., G.M. Raisbeck, F.Yiou and J. Jouzel, Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records, Earth and Planet. Sci. Lett. 150, 453, doi:10.1016/S0012-821X(97)00082-4 (1997).

[57] Stozhkov, Y.I., N.S. Svirzhevsky and V.S. Makhmutov, Cosmic ray measurements in the atmosphere, in Proc. of theWorkshop on Ion-Aerosol-Cloud Interactions, ed. J. Kirkby, CERN, Geneva, CERN 2001-007, 41–62 (2001). workshop/proceedings.html

[58] Babarykin, V.K., V.V. Bayarevich, Y.I. Stozhkov and T.N. Charakhchyan, Latitude survey of cosmic ray intensity in the stratosphere, Geomagnetizm i Aeronomia 4 No.3, 458-463 (1964) (in Russian).

[59] Bond, G.C., and R. Lotti, Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation, Science 267, 1005–1010 (1997).

[60] Bond, G.C., W. Showers, M. Cheseby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas and G. Bonani, A pervasive millennial-scale cycle in North Atlantic Holocene and glacialclimates, Science 278, 1257–1266 (1997).

[61] Bond, G.C., B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffmann, R. Lotti- Bond, I. Hajdas and G. Bonani, Persistent solar influence on North Atlantic climate during the Holocene, Science 294, 2130–2136 (2001).

[62] Hu, F.S., D. Kaufman, S.Yoneji, D. Nelson, A. Shemesh, Y. Huang, J. Tian, G.C. Bond, B. Clegg and T. Brown, Cyclic variation and solar forcing of Holocene climate in the Alaskan sub-Arctic, Science 301, 1890–1893 (2003).

[63] Russell, J.M., and T.C. Johnson, Late Holocene climate change in North Atlantic and equatorial Africa: millennial-scale ITCZ migration, Geophys. Res. Lett. 32, doi:10.1029/2005GL023295 (2005).

[64] Wang, Y., et al., The Holocene Asian monsoon: links to solar changes and North Atlantic climate, Science 308, 854–857 (2005).

[65] Neff, U., et al., Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 ky ago, Nature 411, 290–293 (2001).

[66] Field, C.V., G. Schmidt, D.Koch, and C. Salyk, Modeling production and climate-related impacts on 10Be concentration in ice cores, J. Geophys. Res. 111, D15107, doi:10.1029/2005JD006410 (2006).

[67] Christl, M., C. Strobl and A. Mangini, Beryllium-10 in deep-sea sediments: a tracer for the Earth’s field intensity during the last 200,000 years, Quat. Sc. Rev. 22, 725–739 (2003).

[68] Christl, M., A. Mangini, S. Holzk¨amper and C. Sp¨otl, Evidence for a link between the flux of galactic cosmic rays and Earth’s climate during the past 200,000 years, J. Atm. Sol. Terr. Phys. 66, 313–322 (2004).

[69] Guyodo, Y., and J.-P. Valet, Global changes in intensity of the Earth’s magnetic field during the past 800 kyr, Nature 399, 249–252 (1999).

[70] Beck, J.W., et al., Extremely large variations of atmospheric 14C concentration during the last glacial period, Science 292, 2453–2458 (2001).

[71] Muscheler, R., et al., Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records, Earth and Planet. Sci. Lett. 219, 325–340 (2004).

[72] Sp¨otl, C., A. Mangini, N. Frank, R.,Eichst¨adter and S.J. Burns, Start of the last interglacial period at 135 ka: Evidence from a high Alpine speleothem, Geology 30, No. 9, 815–818 (2002).

[73] Henderson, G.M., and N.C. Slowey, Evidence from U/Th dating against Northern Hemisphere forcing of the penultimate deglaciation, Nature 404, 61–66 (2000).

[74] Gallup, C.D., H. Cheng, F.W. Taylor and R.L. Edwards, Direct determination of the timing of sea level change during Termination II, Science 295, 310–313 (2002).

[75] Winograd, I.J., T.B. Coplen, J.M. Landwehr, A.C. Riggs, K.R. Ludwig, B.J. Szabo, P.T.Kolesar, and K.M. Revesz, Continuous 500,000-year climate record from vein calcite in Devil’s Hole, Nevada, Science 258, 255–260 (1992).

[76] Visser, K., R. Thunell and L. Stott, Magnitude and timing of temperature change in the Indo- Pacific warm pool during deglaciation, Nature 421, 152–155 (2003).

[77] Kirkby, J., A. Mangini and R.A. Muller, The glacial cycles and cosmic rays, CERN-PH-EP/2004- 027 (2004).

[78] Malkus, W.V.R., Precession of the Earth as a cause of geomagnetism, Science 160, 259–264 (1968).

[79] Channell, J.E.T., D.A. Hodell, J. McManus and B. Lehman, Orbital modulation of the Earth’s magnetic field intensity, Nature 394, 464–468 (1998).

[80] Yamazaki, T., and H. Oda, Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination, Science 295, 2435–2438 (2002).

[81] Wagner, G., J. Masarik, J. Beer, S. Baumgartner, D. Imboden, P.W.Kubik, H.-A. Synal and M. Suter, Reconstruction of the geomagnetic field between 20 and 60 ky BP from cosmogenic radionuclides in the GRIP ice core, Nuc. Inst. Meth. Phys. Res. B172, 597–604 (2000).

[82] Guillou, H., B.S. Singer, C. Laj, C. Kissel, S. Scaillet and B.R. Jicha, On the age of the Laschamp geomagnetic excursion, Earth and Planet. Sci. Lett. 227, 331–343 (2004).

[83] Wagner, G., D M. Livingstone, J. Masarik, R. Muscheler and J. Beer, Some results relevant to the discussion of a possible link between cosmic rays and the Earth’s climate, J. Geophys. Res. 106, D4, 3381–3387 (2001).

[84] Laj, C., C. Kissel, A. Mazaud, J.E.T. Channell and J. Beer, North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event, Philos. Trans. R. Soc. A 358, 1009–1025 (2000).

[85] Wang, Y.J., H. Cheng, R.L. Edwards, Z.S. An, J.Y.Wu, C.-C. Shen, J.A. Doral, A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China, Science 294, 2345–2348 (2001).

[86] Wang, X., A.S. Auler, R.L. Edwards, H. Cheng, P.S. Cristalli, P.L. Smart, D.A. Richards and C.- C. Shen, Wet periods in northeastern Brazil over the past 210 ky linked to distant climate anomalies, Nature 432, 740–743 (2004).

[87] Piotrowski, A.M., S.L. Goldstein, S.R. Hemming and R.G. Fairbanks, Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science 307, 1933–1938 (2005).

[88] Veizer, J., Y. Godderis and L.M. Franc¸ois, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic Eon, Nature 408, 698–701 (2000).

[89] Shaviv, N.J., Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection, Phys. Rev. Lett. 89, 051102 (2002).

[90] Shaviv, N.J., and J.Veizer, Celestial driver of Phanerozoic climate?, GSA Today, Geological Society of America, July 2003, 4–10 (2003).

[91] Rahmstorf, S. et al., Cosmic rays, carbon dioxide, and climate, Eos 85, no. 4, 38–40 (2004).

[92] Royer, D.L., et al., CO2 as a primary driver of Phanerozoic climate, GSA Today 14, no. 3, 4–10 (2004).

[93] Wallmann, K., Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine _18O record, Geochemistry Geophysics Geosystems 5, doi:10.1029/2003GC000683 (2004).

[94] Gies, D.R., and J.W. Helsel, Ice age epochs and Sun’s path through the galaxy, Astrophys. J. 626, 844-848 (2005).

[95] Svensmark, H., Imprint of galactic dynamics on Earth’s climate, Astron. Nachr. 327, No. 9, 866– 870 (2006).

[96] Frisch, P., The galactic environment of the Sun, American Scientist 88, No. 1, 52, doi:

10.1511/2000.1.52 (2000).

[97] Pavlov, A.A., O.B. Toon, A.K. Pavlov, J. Bally and D. Pollard, Passing through a giant molecular cloud: “snowball” glaciations produced by interstellar dust, Geophys. Res. Lett. 32, L03705, doi:10.1029/2004GL021890 (2005).

[98] Florinski, V., and G.P. Zank, Galactic cosmic ray response to heliospheric environment changes and implications for cosmogenic isotope records, Proc. 29th International Cosmic Ray Conference, Pune, India, 2, 263–266 (2005).

[99] Rohde, R.A., and R.A. Muller, Cycles in fossil diversity, Nature 434, 208–210 (2005).

[100] Svensmark, H., Cosmic rays and the biosphere over 4 billion years, Astron. Nachr. 327, No. 9, 871–875 (2006).

[101] Fields, B.D., and J. Ellis, On deep-ocean 60Fe as a fossil of near-earth supernovae, New Astronomy 4, 419–430 (1999).

[102] Knie, K., G.Korschinek, T. Faestermann, E.A. Dorfi, G. Rugel and A.Wallner, 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source, Phys. Rev. Lett. 93, 171103 (2004).

[103] Ermakov, V.I., G.A. Bazilevskaya, P.E. Pokrevsky and Y.I. Stozhkov, Ion balance equation in the atmosphere, J. Geophys. Res. 102, 23413 (1997).

[104] Kulmala, M., H.Vehkamaki, T. Petajda, M. Dal Maso, A. Lauri, V.M.Kerminen, W. Birmili and P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Atm. Sci. 35, 143–176 (2004).

[105] Yu, F.Q., and R.P. Turco, Ultrafine aerosol formation via ion-mediated nucleation, Geophys. Res. Lett. 27, 883–886 (2000).

[106] Yu, F., and R.P. Turco, From molecular clusters to nanoparticles: The role of ambient ionisation in tropospheric aerosol formation, J. Geophys. Res. 106, 4797–4814 (2001).

[107] Laakso, L., J.M.M¨akel¨a, L. Pirjola and M.Kulmala, Model studies on ion-induced nucleation in the atmosphere, J. Geophys. Res. D20, 10.1029/2002JD002140 (2002).

[108] Laakso, L., M.Kulmala and K.E.J. Lehtinen, Effect of condensation rate enhancement factor on 3-nm (diameter) particle formation in binary ion-induced and homogeneous nucleation, J. Geophys. Res. 108, 4574 (2003).

[109] Kulmala, M., et al., Toward direct measurement of atmospheric nucleation, Science 318, 89–92 (2007).

[110] Dal Maso, M., M.Kulmala, K.E.J. Lehtinen, J.M. Makela, P. Aalto and C.D. O’Dowd, Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers, J. Geophys. Res.-Atmos., 107, (2002).

[111] Vohra, K.G., M.C. Subba Ramu and K.N.Vasudevan, Role of natural ionisation in the formation of condensation nuclei in the atmospheric air, in Planetary Electrodynamics, eds. S.C. Coroniti and J. Hughes, Gordon and Breach Science Publishers (1969).

[112] Vohra, K.G., M.C. Subba Ramu and T.S. Muraleedharan, An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere, Atmospheric Environment 18, 1653 (1984).

[113] Svensmark, H., J.O.P. Pedersen, N.D. Marsh, M.B. Enghoff and U.I. Uggerhoj, Experimental evidence for the role of ions in particle nucleation under atmospheric conditions, Proc. Roy. Soc. A, doi:10.1098/rspa.2006.1773 (2006).

[114] Eichkorn, S., S.Wilhelm, H. Aufmhoff, K.H.Wohlfrom, and F. Arnold, Cosmic ray-induced aerosol formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere, Geophys. Res. Lett. 29, 43 (2002).

[115] Lee, S.H., J.M. Reeves, J.C.Wilson, D.E. Hunton, A.A.Viggiano, T.M. Miller, J.O. Ballenthin and L.R. Lait, Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, 301, 1886–1889 (2003).

[116] Laakso, L., T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M.Kulmala, U. Horrak, J. Paatero, M. Hanke and F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events, Atmos. Chem. Phys., 4, 2353–2366 (2004).

[117] Froyd, K.D., and E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 1. Positive ions, J. Phys. Chem. A, 107, 9800–9811 (2003).

[118] Froyd, K.D., and E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative ions, J. Phys. Chem. A, 107, 9812– 9824 (2003).

[119] Lovejoy, E.R., J. Curtius and K.D. Froyd, Atmospheric ion-induced nucleation of sulphuric acid and water, J. Geophys. Res. 109, D08204, doi:10.1029/2003JD004460 (2004).

[120] Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 94, 231–258 (2000).

[121] Harrison, R.G., and K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere,

Rev. Geophys., 41, art. no.-1012 (2003).

[122] Kraakevik, J.H., Measurements of current density in the fair weather atmosphere, J. Geophys. Res. 66, 3735–3748 (1961).

[123] Rycroft, M.J., S. Israelsson, and C. Price, The global atmospheric electric circuit, solar activity and climate change, J. Atm. Sol. Terr. Phys. 62, 1563–1576 (2000).

[124] Markson, R., Modulation of the Earth’s electric-field by cosmic-radiation, Nature, 291, 304–308 (1981).

[125] Harrison, R.G., Long-range correlations in measurements of the global atmospheric electric circuit, J. Atm. Sol. Terr. Phys. 66, 1127–1133 (2004).

[126] Tinsley, B.A., R.P. Rohrbaugh, M. Hei and K.V. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes, Atmos. Res. 57, 2118–2134 (2000).

[127] Sastry, S., Ins and outs of ice nucleation, Nature 438, 746–747 (2005).

[128] Barlow, A.K., and J. Latham, A laboratory study of the scavenging of sub-micron aerosol by charged raindrops, Quart. J. R. Met. Soc. 109, 763–770 (1983).

[129] Tinsley, B.A., L. Zhou and A. Plemmons, Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos. Res. 79, 266–295 (2006).

[130] Wilson, C.T.R., Expansion apparatus, Proc. Roy. Soc. London A 87, 277 (1912).

[131] Dickinson, R.E., Solar variability and the lower atmosphere, Bull. Amer. Meteor. Soc. 56, 1240 (1975).

[132] Ney, E.P., Cosmic radiation and the weather, Nature 183, 451–452 (1959).

[133] Pudovkin, M.I. and S.V.Veretenenko, Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere, J. Atm. Sol. Terr. Phys. 59, 14, 1739-1746 (1997).

[134] Rossow, W.B. , A.W.Walker, D.E. Beuschel, and M.D. Roiter, International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets, WMO/TD 737, World Meteorological Organization, Geneva (1996).

[135] Laut, P., Solar activity and terrestrial climate: an analysis of some purported correlations, J. Atm. Sol. Terr. Phys. 65, 801–812 (2003).

[136] Palle, E., C.J. Butler and K. O’Brien, The possible connection between ionization in the atmosphere by cosmic rays and low level clouds, J. Atm. Sol. Terr. Phys. 66, 1779-1790 (2004).

[137] Voiculescu, M., I.G. Usoskin, and K. Mursula, Different response of clouds at the solar input, Geophys. Res. Lett. 33, L21802 (2006).

[138] Voiculescu, M., I.G. Usoskin, and K. Mursula, Effect of ENSO and volcanic events on the Suncloud link, Adv. Sp. Res. 40, 1140–1145 (2007).

[139] Todd, M.C., and D.R. Kniveton, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays, J. Geophys. Res. 106, No. D23, 32031–32041 (2001).

[140] Todd, M.C., and D.R. Kniveton, Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update, J. Atm. Sol. Terr. Phys. 66, 1205-1211 (2004).

[141] Tinsley, B.A., and F.Yu, Atmospheric ionization and clouds as links between solar activity and climate, in Solar variability and its effects on climate, eds. J. Pap and P. Fox, Geophysical Monograph 141, AGU Press, Washington, DC, 321–339, (2004).

[142] Veretenenko, S., and P. Thejll, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atm. Sol. Terr. Phys. 66, 393–405 (2004).

[143] Troshichev, O., L. Egorova, A. Janzhura and V.Vovk, Influence of the disturbed solar wind on atmospheric processes in Antarctica and El-Ni˜no Southern Oscillation (ENSO), Mem. S. A. It. 76, 890–898 (2005).

[144] Landscheidt, T., Solar forcing of El Ni˜no and La Ni˜na, Proc. The Solar Cycle and Terrestrial Climate, Santa Cruz de Tenerife, Tenerife, Spain, ESA SP-463, (2000).

[145] Kniveton, D.R., and M.C. Todd, On the relationship of cosmic ray flux and precipitation, Geophys. Res. Lett. 28, No. 8, 1527–1530 (2001).

[146] Bretherton, C.S., et al., The EPIC 2001 stratocumulus study, Bull. Amer. Meteor. Soc. 85, No.7, 967–977 (2004).

[147] Wentz, F.J., L. Ricciardulli, K. Hilburn and C. Mears, How much more rain will global warming bring?, Science 317, 233–235 (2007).

[148] Kaufman, Y.J., I.Koren, L.A. Remer, D. Rosenfeld and Y. Rudich, The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, Proc. Nat. Acad. Sc. USA 102, No. 32, 11207–11212 (2005).

[149] Koren, I., Y.J. Kaufman, D. Rosenfeld, L.A. Remer, and Y. Rudich, Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett. 32, L14828,

doi:10.1029/2005GL023187, 11207–11212 (2005).

[150] Salomonson, V.V., W.L. Barnes, P.W. Maymon, H.E. Montgomery, and H. Ostrow, MODIS: Advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).

[151] Twomey, S., The influence of pollution on the shortwave albedo of clouds, J. Atm. Sci. 34, No. 7, 1149–1154 (1977).

[152] Rosenfeld, D., private communication (2006).

[153] Wood, R., D.L. Hartmann, Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection, J. Clim. 19. No. 9, 1748–1764 (2006).

[154] Randall, D.A., Conditional instability of the first kind upside-down, J. Atm. Sci. 37, No. 1, 125 - 130 (1980).

[155] Stevens, B., et al., Pockets of open cells and drizzle in marine stratocumulus,

Bull. Amer. Meteor. Soc. 86, No. 1, 51–57 (2005).

[156] Wood, R., Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure, J. Atm. Sci. 62, No. 9, 3011 (2005).

[157] Clarke, A.D., et al., Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources, Science 282, 89–92 (1998).

[158] Williams, E.R., Lightning and climate: a review, Atm. Res. 76, 272–287 (2005).

[159] Williams, E.R., et al., Contrasting convective regimes over the Amazon: implications for cloud electrification, J. Geophys. Res., LBA Special Issue, 107, D20, 8082, doi:10.1029/2001JD000380 (2002).

[160] Williams, E.R., and S. Stanfill, The physical origin of the land-ocean contrast in lightning activity, C.R. Physique 3, 1277–1292 (2002).

[161] Williams, E.R., T. Chan and D. Boccippio, Islands as miniature continents: another look at the land-ocean lightning contrast, J. Geophys. Res. 109, D16206, doi: 10.1029/2003JD003833 (2004).

[162] Andreae, M.O., Aerosols before pollution, Science 315, 50–51 (2007).

[163] Van Loon, H., G.A. Meehl and J.M. Arblaster, A decadel solar effect in the tropics in July-August, J. Atm. Sol. Terr. Phys. 66, 1767-1778 (2004).

[164] Chiang, J.C.H., and A.Koutavas, Tropical flip-flop connections, Nature 432, 684–685 (2004).

[165] Ram, M., M. Stolz and G.Koenig, Eleven year cycle of dust concentration variability observed in the dust profile of the GSP2 ice core from Central Greenland; Possible solar cycle connection, Geophys. Res. Lett. 24, No. 19, 2259–2362 (1997).

[166] Turner, S.M., M.J. Harvey, C.S. Law, P.D. Nightingale and P.S. Liss, Iron-induced changes in oceanic sulfur biogeochemistry, Geophys. Res. Lett. 31, L14307, doi:10.1029/2004GL020296 (2004).

[167] Rohrer, F., and H. Berresheim, Strong correlation between levels of tropospheric hydroxyl radicals and solar ultra violet radiation, Nature 442, 184–187 (2006).

[168] Liu, Z., and T.D. Herbert, High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch, Nature 427, 720–723 (2004).

[169] CLOUD proposal: A study of the link between cosmic rays and clouds with a cloud

chamber at the CERN PS, CERN-SPSC-2000-021, SPSC-P317 (2000); CERN-SPSC-2000- 030, SPSC-P317 Add.1 (2000); CERN-SPSC-2000-041, SPSC-P317 Add.2 (2000); CERNSPSC-2004-023, SPSC-M721 (2004); CERN-SPSC-2006-004, SPSC-P317 Add.3 (2006).

[170] Kirkby, J., CLOUD: a particle beam facility to investigate the influence of cosmic rays on clouds, CERN-EP-2002-019 (2002), and Proc. of the Workshop on Ion-Aerosol-Cloud Interactions, ed. J. Kirkby, CERN, Geneva, CERN 2001-007, 175–248 (2001). workshop/proceedings.html